
 

937 

ISBN: 978-93-80689-28-9 

Comparison of Least Square Fitting Algorithms for the Evaluation of Roundness 

Error 

Rhinithaa PT1, Selvakumar P1*, Nikhil Sudhakaran1, Vysyaraju Anirudh1, Deepak Lawrence K2, Jose Mathew1 
1 National Institute of Technology Calicut, Kerala, India 

2 Manipal Institute of Technology, Manipal University, Manipal, Karnataka, India 

Abstract 

Roundness error is one of the significant quantifiers used in quality control of cylindrical or circular components. In both laboratories and 

industries, direct estimation of roundness error is predominantly obtained using the Coordinate Measuring Machine (CMM) and/or form 

testing device. Estimation of roundness error can be accomplished using four different reference circles viz, Minimum Circumscribed 

Circle (MCC), Maximum Inscribed Circle (MIC), Minimum Zone Circle (MZC) and Least Square Circle (LSC). MZC matches closely 

with ISO standards of roundness, while, MCC is used for roundness evaluation of shafts and MIC for holes. LSC is a very popular and 

widely used approach owing to its robustness, computational efficiency, and its ability to work on a wide range of datasets. Different LSC 

algorithms have been developed which fall into two broad categories: geometric fits and algebraic fits. The performance of these 

algorithms, in terms of their accuracy and computational time, is influenced by the type and size of input data. A test for the relative 

performance of these algorithms is necessary in order to make a decision about which algorithm is to be used for a particular application. 

In this paper, a few selected geometric fits and algebraic fits used for LSC fitting have been compared for different datasets. In order to 

quantify its ability to accommodate varied data (CMM and form profile), the performance of all the algorithms is compared using the 

same ten datasets measured using both devices.  
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1. INTRODUCTION 

Circular components account for about three-quarters of all 

engineering components making their prominence span across 

many different industries. Circularity/roundness is a measure of 

the degree of compliance of a component to the profile of an 

ideal circle. Approaching perfect circularity is an idealized 

situation because every manufacturing process entails some 

degree of inaccuracy. Few of those inaccuracies which attribute 

to out-of-roundness include clamping distortions, spindle run-

out, temperature change, erratic cutting etc. Thus, assembly of 

any circular component necessitates both dimensional and 

geometrical tolerances to be met as per the requirements. 

ISO 1101 [1] defines roundness as the radial distance between 

two concentric circles that are separated by minimum possible 

distance and contains all the measured points on the profile. 

Roundness evaluation is predominantly carried out using four 

different reference circles viz., Minimum Circumscribed Circle 

(MCC), Maximum Inscribed Circle (MIC), Minimum Zone 

Circle (MZC) and Least Square Circle (LSC). MZC is the 

reference circle which complies most closely with the standard 

definition of roundness. It gives the minimum value of 

roundness error when compared to the other reference circles; it 

is widely preferred. MCC and MIC references are used for 

roundness error estimation of shafts and holes respectively to 

follow the industrial practices [2]. Among these four, LSC is 

the one most commonly adopted for industrial applications. It is 

based on the mathematical principle of minimization of the sum 

of the square of deviations of the measured points from the 

fitted circle. LSC method is robust, computationally efficient 

and can easily accommodate large-sized datasets, thus 

justifying its wide usage. With each of the reference circle 

having its own inherent perks, the choice of their usage for 

roundness evaluation depends upon the specific application. 

LSC fitting algorithms [3] are categorized into two types – 

geometric fits and algebraic fits. Geometric fits are iterative and 

involve intensive computations while maintaining high 

accuracy. This leads to higher computational time and 

probability of divergence due to its iterative nature. Algebraic 

fits are simpler, reliable and non-iterative in nature. Hence, they 

are preferred in cases of large datasets and to provide an initial 

guess for the subsequent geometric fitting procedure. The 

accuracy, as well as the computational efficiency of the 

algorithms depend on the type and size of the data input.  The 

selection of appropriate LSC algorithm for a particular 

application must be based on the tradeoff between the degree of 

accuracy required and the computational time. Once an 

algorithm is selected, the LSC circle can be fitted to the dataset 

to obtain the center, say O. Two concentric circles with O as 

their center are constructed so as to pass through the farthest 

point and the nearest point calculated from the LSC center. The 

difference between the maximum and minimum radius gives 

the required roundness error. 

Coordinate Measuring Machine (CMM) and form tester device 

are widely used to evaluate the roundness error by sampling 

points from the test component. Such machines have options to 

evaluate roundness error using all the four reference circles. 

Each of the reference circle has many different 

approaches/techniques for its method of computation. It is 

essential for a machine developer to select the best possible 

algorithm for each, in order to provide the most accurate result. 

This entails a comparison of computational accuracy among the 

many available circle fitting approaches. The present work 

deals with the comparative study of different LSC computation 

algorithms owing to its wide usage in many roundness 

measuring machines. The objective of the present work is to 

compare a few LSC fitting algorithms, both geometric and 

algebraic fits, and evaluate their accuracy of roundness error 

computation.
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A total of ten algorithms have been chosen from the literature 

for the performance comparison. The selected algorithms for 

comparison include Spath Circle [4], Trust Region Method [5], 

Levenberg-Marquardt algorithm [6], Landau Fit [7], Reimann 

Circle [8], Kasa Circle [9], Pratt Circle [10], Taubin Circle [11], 

Hyper Fit [12] and Kukush-Markovsky-Van Huffel (KMvH) 

Algorithm [13]. CMM data and form tester data have different 

properties in terms of the extent of undulation in their profile. 

This difference in the nature of the two types of data can be 

seen from Fig 1. Fig 1a shows the sample profile obtained from 

CMM which is fitted with LSC circle (using Levenberg-

Marquardt algorithm) characterized by radius R and center (Cx, 

Cy). Fig 1b shows the form tester data for one of the test pieces 

which was manufactured for this study. Thus, to study the 

ability of LSC algorithms to work on different types of data, the 

presented comparison has been done using ten different datasets 

each obtained using CMM and roundness tester.  

2. METHODOLOGY 

The relative superiority in the accuracy of roundness error 

computation among the ten algorithms was established as 

follows. The study was conducted by inputting the same sets of 

data (CMM and form profile) to all ten benchmark algorithms. 

For a particular dataset, the algorithm(s) which gave the 

smallest magnitude of roundness error value was found. Ten 

different datasets each for CMM and form data were used. For 

comparison of CMM data, seven sets were obtained through 

measurement from test pieces manufactured for this study and 

three published datasets [14-16] were used. In the case of form 

data, all ten datasets were extracted through measurement. In 

all, ten LSC algorithms were compared against ten different 

datasets for CMM and form data separately.  

Upon obtaining the results of the 100 test runs for CMM and 

form data individually, each of the ten algorithms is given its 

performance score as elucidated. Firstly, the tabulated 

roundness errors are compared column-wise, and the row with 

the least value is highlighted. This helps in finding the most 

accurate roundness algorithm for a given dataset and the 

process is repeated for all ten sets of data. If there are multiple 

rows along a single column giving the same lowest value, all 

are selected. Next, conducting a row-wise comparison brings 

out the best-performing algorithm. For this, among the ten 

datasets input, the number of datasets from which the algorithm 

gave the least roundness error value is counted using the total 

number of highlighted boxed in a particular row. This total 

number corresponds to the score assigned to an algorithm. For 

instance, when an algorithm ‘ABC’ has four highlighted blocks 

along its row, it signals that ABC gave the most accurate 

answer among the ten algorithms for 4 out of 10 data inputs. 

This scoring technique serves as a direct indicator for their 

relative accuracy in roundness computation. The algorithm(s) 

which has the maximum numerical score have been forwarded 

for use. 

For this comparative study, all the ten algorithms have been 

replicated using MATLAB. It was found from the literature 

survey of benchmark algorithms that different authors have 

used disparate software platforms to model their algorithms. 

Using a common platform for testing is mandatory to eliminate 

computation errors caused due to different compilers. The 

usage of different computational platforms has more perturbing 

effects in the case of form data where the number of iterations 

is large. These small errors are of importance because the 

magnitude of roundness error values is generally in micrometer 

order. Hence, even trifling changes in the third or fourth 

decimal place is of relevance in such cases of roundness 

comparisons. 

 

 

 

 

 

(a) CMM data: General form P(x,y) 

(b) Form tester data: General form P(r,θ) 

 
Fig 1. Sample profiles from roundness evaluation machines 

3. EXPERIMENTAL METHODS 

 

Seven low carbon steel cylindrical test pieces were 

manufactured for this comparative study to collect form and 

CMM data. The diametrical range of the test pieces was from 

20 to 110 mm. This particular interval was chosen to cover the 

three popularly used cutoff values of 50, 150 and 500 

undulations per revolution used in form tester devices according 

to ISO 12181-2 [17]. The following were the dimensions of the 

7 workpieces: 20 mm, 32 mm, 42 mm, 48 mm, 56 mm, 76 mm, 

and 110 mm. The test pieces were designed such that these 

dimensions included both classes of the convex and concave 

profile. The configuration of the test piece surfaces varies as 

both inner (32 mm, 42 mm, 56 mm) and outer curved surfaces 

(20 mm, 48 mm, 76 mm, 110 mm) This was done to mimic the 

shafts and holes which are frequently tested for roundness in the 

industries. The different configurations would create disparate 

form profiles creating an equal platform for testing the 

algorithms. 

 3.1 CMM data acquisition 

The datasets for CMM were measured using the Mitutoyo 

Bright-A 504. It has a measurement accuracy of 4 +5 L/1000 

µm and repeatability of 3.0 µm. Renishaw’s ruby tip PH10T 

probe was used for all measurements. The workpiece datum 
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was established using the ‘surface and two-circle method’ and 

the coordinates were measured for each of the seven 

workpieces at a particular cross-section. Systematic errors were 

reduced by using proper initial probe calibration.  The datasets 

size range from 16 to 32 points. The distribution of the data 

points over the surface has random angular intervals but caution 

was taken to distribute the points over all four quadrants.  

Table 1. Comparison of benchmark algorithms using CMM data  

Table 2. Comparison of benchmark algorithms using form tester data  

 

 Unit: µm 

Table 3. Scores obtained by benchmark algorithms 
Data Hyper Kasa KMvH Landau LMA Pratt Riemann Spath Taubin Trust 

Region 

CMM 2 3 4 3 5 2 2 3 2 5 

Form 0 1 2 3 2 0 0 3 1 2 

3.2 Form tester data acquisition 

Mitutoyo RA1600M form tester was used to obtain the ten form 

datasets using 12AAL021 stylus, carbide ball type of size ø1.6 

mm. The same seven low carbon steel workpieces were used 

for data acquisition. Following ISO 12181-2, filter selection 

and cutoff ranges were made. Datasets sizing up to 1800 points 

were obtained from each test piece, but, for the ease of 

illustration, results of datasets of size 72 points have been 

discussed in this paper. Measurement using form tester always 

entails the problem of limacon formation which results from 

improper centering. Centering in a form tester is the process of 

matching the center of the workpiece with the machine center. 

More the deviation between the two centers, more is the 

limacon error. Even if the LSC algorithms have the ability to 

match the real roundness error closely, the presence of limacon 

error may distort the computed roundness error. Thus, 

minimization of this error would reduce the difference between 

the real and estimated roundness value. Thus, centering was 

done using the in-built Digital Adjustment Table guidance 

system. Though limacon error cannot be completely eliminated, 

this inbuilt function helps minimize it to a great extent. 

 

 

 

4. RESULTS AND DISCUSSION 

The results of the comparative study for CMM and form data 

are presented in Table 1 and Table 2 respectively. Table 1 

shows that the algebraic fits such as Kasa, Pratt, Taubin and 

Hyper Fit algorithms are comparatively less accurate in case of 

CMM data. In the case of form data, a similar trend is found in 

the performance of algebraic fits. It is observed from Table 2 

that the Trust Region Method and Levenberg-Marquardt 

algorithm have the highest score for CMM data and, Landau Fit 

and Spath Circle show the best performance for form data. All 

these four approaches belong to the category of geometric fits. 

Thus, these results bolster the superiority of geometric fits over 

the algebraic approaches in terms of computational accuracy 

which can be seen from the summarized scores shown in Table 

3. If one is ready to forsake the accuracy of error estimation to 

gain the benefit of lesser computation time, algebraic fits may 

be safely used for CMM data. Use of algebraic fits for form 

data is not suggested due to the marked drop in performance in 

contrast to the data from CMM. Among the algebraic fits, Kasa 

circle is recommended for use as it takes approximately one-

tenth of the computation time required for one iteration of the 

Levenberg-Marquardt algorithm which is a geometric fit. Fig 2 

 ALGORITHMS 1 2 3 4 5 6 7 Ref[14] Ref[15] Ref[16] 

Hyper 0.3741 0.9530 0.4264 0.8420 0.6568 0.6058 0.9036 38.1640 2.6188 0.0298 

Kasa  0.3742 0.9530 0.4264 0.8417 0.6571 0.6058 0.9036 38.1985 2.6069 0.0298 

KMvH 0.3738 0.9530 0.4264 0.8419 0.6573  0.6056 0.9036 38.1526 2.6192 0.0341 

Landau 0.3740 0.9518 0.4262 0.8420 0.6566 0.6058 0.9036 38.1738 2.5961 0.0298 

LMA  0.3740 0.9517 0.4260 0.8422 0.6561 0.6057 0.9037 38.1734 2.5961 0.0298 

Pratt 0.3741 0.9430 0.4264 0.8420 0.6568 0.6058 0.9036 38.1640 2.6188 0.0298 

Riemann 0.3741 0.9530 0.4264 0.8419 0.6569 0.6058 0.9036 38.1764 2.6146 0.0298 

Spath 0.3740 0.9518 0.4262 0.8420 0.6566 0.6058 0.9036 38.1737 2.5961 0.0298 

Taubin 0.3741 0.9530 0.4264 0.8420 0.6568 0.6058 0.9036 38.1633 2.6190 0.0298 

Trust Region 0.3740 0.9517 0.4260 0.8422 0.6561 0.6057 0.9037 38.1734 2.5961 0.0298 

ALGORITHMS 1 2 3 4 5 6 7 8 9 10 

Hyper 6.2341 49.1427 31.6873 9.4646 36.4976 11.0093 6.9126 4.2348 6.3379 62.5290 

Kasa  6.1254 49.4023 31.6741 9.4867 36.4869 11.0175 6.8607 4.2196 6.3291 62.6189 

KMvH 6.2374 49.1428 31.6874 9.4633 36.4973 11.0031 6.9130 4.2347 6.3381 62.5230 

Landau 5.9286 49.7211 31.6483 9.3804 36.4820 11.1074 6.7950 4.2075 6.3569 64.1801 

LMA  5.9284 49.7214 31.6484 9.3801 36.4821 11.1088 6.7949 4.2076 6.3570 64.1805 

Pratt 6.2341 49.1427 31.6873 9.4646 36.4976 11.0093 6.9126 4.2348 6.3379 62.5290 

Riemann 6.1957 49.2351 31.6825 9.4725 36.4937 11.0122 6.8941 4.2294 6.3348 62.5613 

Spath 5.9286 49.7211 31.6483 9.3804 36.4820 11.1074 6.7950 4.2075 6.3569 64.1801 

Taubin 6.2370 49.1378 31.6875 9.4644 36.4977 11.0092 6.9136 4.2350 6.3381 62.5266 

Trust Region 5.9284 49.7214 31.6484 9.3802 36.4821 11.1088 6.7948 4.2076 6.3570 64.1805 
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shows the roundness plot for form data 5 used in Table 2. The 

radius RLSC and center(O) with coordinates Cx, Cy was 

calculated using Landau Fit and the difference between the two 

radii Rmax and Rmin gives the required roundness error. The 

following are their values: Cx = -1.2795, Cy = 0.5734, Rmax =   

78.8179, Rmin = 42.3359 and RLSC = 55.6542.  

 

 

 

 

 

 

Fig 2. Roundness plot for form data 5 using Landau Fit 

On comparing the difference found among the CMM and form 

data results, it is easy to observe that CMM results have a 

smaller variation amongst them. That is, the difference in 

magnitude among the roundness error values for a particular 

dataset is lesser for CMM when compared to form data. Due to 

the mechanical filtering caused by the CMM probe size, data 

acquired from CMM have a limitation in detecting undulations 

smaller than its diameter. Moreover, the number of 

representative sample data points collected from CMM is less 

compared to that of sample data acquired from form tester. 

Because of these, the CMM data acquired from the workpiece 

more closely approximates a circle when compared to data from 

the form tester. With the form test probe being smaller in size, 

can detect these variations more effectively, thus, making the 

form data comparatively more staggered. Hence, the least 

square algorithms do not get much scope to showcase their 

difference in efficiency of calculation of roundness error. This 

entails all of them to give very close roundness error values.  

5. CONCLUSIONS 

Ten different least-square algorithms were compared to 

quantify their relative performance in the accuracy of roundness 

error calculation. The ten benchmark algorithms covered both 

classes of geometric and algebraic fits. The study was 

conducted for ten data inputs, and, algorithms to be used in 

CMM and form testing device has been suggested 

independently. All the assessed least-square algorithms have 

very close accuracy for CMM data due to the lack of variation 

of the measured profile from the CMM and the ideal circle. The 

Levenberg-Marquardt algorithm and Trust Region Method are 

recommended for use as they scored the highest among the ten 

algorithms which were compared. Landau Fit and Spath Circle 

are forwarded for form data. In cases where computational time 

has precedence over accuracy, Kasa circle (algebraic fit) may 

be used. It is computationally quick and roundness error can be 

found without compromising much on accuracy. This 

comparative study based on LSC methods not only establishes 

the best approach for roundness error computation using 

CMM/form tester for academic community but is also of use to 

metrological system designers to make an optimum choice of 

algorithm to be implemented. 
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